首页    期刊浏览 2025年04月18日 星期五
登录注册

文章基本信息

  • 标题:ML-CLUBAS: A Multi Label Bug Classification Algorithm
  • 本地全文:下载
  • 作者:Naresh Kumar Nagwani ; Shrish Verma
  • 期刊名称:Journal of Software Engineering and Applications
  • 印刷版ISSN:1945-3116
  • 电子版ISSN:1945-3124
  • 出版年度:2012
  • 卷号:5
  • 期号:12
  • 页码:983-990
  • DOI:10.4236/jsea.2012.512113
  • 出版社:Scientific Research Publishing
  • 摘要:In this paper, a multi label variant of CLUBAS [1] algorithm, ML-CLUBAS (Multi Label-Classification of software Bugs Using Bug Attribute Similarity) is presented. CLUBAS is a hybrid algorithm, and is designed by using text clustering, frequent term calculations and taxonomic terms mapping techniques, and is an example of classification using clustering technique. CLUBAS is a single label algorithm, where one bug cluster is exactly mapped to a single bug category. However a bug cluster can be mapped into the more than one bug category in case of cluster label matches with the more than one category term, for this purpose ML-CLUBAS a multi label variant of CLUBAS is presented in this work. The designed algorithm is evaluated using the performance parameters F-measures and accuracy, number of clusters and purity. These parameters are compared with the CLUBAS and other multi label text clustering algorithms.
  • 关键词:Software Bug Mining; Software Bug Classification; Bug Clustering; Classification Using Clustering; Bug Attribute Similarity; Multi Label Classification
国家哲学社会科学文献中心版权所有