首页    期刊浏览 2025年04月10日 星期四
登录注册

文章基本信息

  • 标题:Analysis of Vector Space Model, Latent Semantic Indexing and Formal Concept Analysis for Information Retrieval
  • 本地全文:下载
  • 作者:C. A. Kumar ; M. Radvansky ; J. Annapurna
  • 期刊名称:Cybernetics and Information Technologies
  • 印刷版ISSN:1311-9702
  • 电子版ISSN:1314-4081
  • 出版年度:2012
  • 卷号:12
  • 期号:1
  • 出版社:Bulgarian Academy of Science
  • 摘要:Latent Semantic Indexing (LSI), a variant of classical Vector Space Model (VSM), is an Information Retrieval (IR) model that attempts to capture the latent semantic relationship between the data items. Mathematical lattices, under the framework of Formal Concept Analysis (FCA), represent conceptual hierarchies in data and retrieve the information. However, both LSI and FCA use the data represented in the form of matrices. The objective of this paper is to systematically analyze VSM, LSI and FCA for the task of IR using standard and real life datasets.
  • 关键词:Formal concept analysis; Information Retrieval; latent semantic;indexing; vector space model.
国家哲学社会科学文献中心版权所有