首页    期刊浏览 2025年04月28日 星期一
登录注册

文章基本信息

  • 标题:Analytic-geometric methods for finite Markov chains with applications to quasi-stationarity
  • 本地全文:下载
  • 作者:Persi Diaconis ; Kelsey Houston-Edwards ; Laurent Saloff-Coste
  • 期刊名称:Latin American Journal of Probability and Mathematical Statistics
  • 电子版ISSN:1980-0436
  • 出版年度:2020
  • 卷号:17
  • 期号:2
  • 页码:901
  • DOI:10.30757/ALEA.v17-35
  • 出版社:Instituto Nacional De Matemática Pura E Aplicada
  • 摘要:For a relatively large class of well-behaved absorbing (or killed) finite Markov chains, we give detailed quantitative estimates regarding the behavior of the chain before it is absorbed (or killed). Typical examples are random walks on boxlike finite subsets of the square lattice Z d absorbed (or killed) at the boundary. The analysis is based on Poincaré, Nash, and Harnack inequalities, moderate growth, and on the notions of John and inner-uniform domains.
  • 其他关键词:Markov Chains, Harnack Inequality, inner-uniform domains.
国家哲学社会科学文献中心版权所有