首页    期刊浏览 2025年04月18日 星期五
登录注册

文章基本信息

  • 标题:Low-dimensional dynamics for working memory and time encoding
  • 本地全文:下载
  • 作者:Christopher J. Cueva ; Alex Saez ; Encarni Marcos
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2020
  • 卷号:117
  • 期号:37
  • 页码:23021-23032
  • DOI:10.1073/pnas.1915984117
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Our decisions often depend on multiple sensory experiences separated by time delays. The brain can remember these experiences and, simultaneously, estimate the timing between events. To understand the mechanisms underlying working memory and time encoding, we analyze neural activity recorded during delays in four experiments on nonhuman primates. To disambiguate potential mechanisms, we propose two analyses, namely, decoding the passage of time from neural data and computing the cumulative dimensionality of the neural trajectory over time. Time can be decoded with high precision in tasks where timing information is relevant and with lower precision when irrelevant for performing the task. Neural trajectories are always observed to be low-dimensional. In addition, our results further constrain the mechanisms underlying time encoding as we find that the linear “ramping” component of each neuron’s firing rate strongly contributes to the slow timescale variations that make decoding time possible. These constraints rule out working memory models that rely on constant, sustained activity and neural networks with high-dimensional trajectories, like reservoir networks. Instead, recurrent networks trained with backpropagation capture the time-encoding properties and the dimensionality observed in the data.
  • 关键词:neural dynamics ; working memory ; time decoding ; recurrent networks ; reservoir computing
国家哲学社会科学文献中心版权所有