首页    期刊浏览 2025年04月27日 星期日
登录注册

文章基本信息

  • 标题:Representation Learning of Knowledge Graphs with Embedding Subspaces
  • 本地全文:下载
  • 作者:Chunhua Li ; Xuefeng Xian ; Xusheng Ai
  • 期刊名称:Scientific Programming
  • 印刷版ISSN:1058-9244
  • 出版年度:2020
  • 卷号:2020
  • 页码:1-10
  • DOI:10.1155/2020/4741963
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    Most of the existing knowledge graph embedding models are supervised methods and largely relying on the quality and quantity of obtainable labelled training data. The cost of obtaining high quality triples is high and the data sources are facing a serious problem of data sparsity, which may result in insufficient training of long-tail entities. However, unstructured text encoding entities and relational knowledge can be obtained anywhere in large quantities. Word vectors of entity names estimated from the unlabelled raw text using natural language model encode syntax and semantic properties of entities. Yet since these feature vectors are estimated through minimizing prediction error on unsupervised entity names, they may not be the best for knowledge graphs. We propose a two-phase approach to adapt unsupervised entity name embeddings to a knowledge graph subspace and jointly learn the adaptive matrix and knowledge representation. Experiments on Freebase show that our method can rely less on the labelled data and outperforms the baselines when the labelled data is relatively less. Especially, it is applicable to zero-shot scenario.

国家哲学社会科学文献中心版权所有