首页    期刊浏览 2025年05月11日 星期日
登录注册

文章基本信息

  • 标题:Runoff generation at the small permafrost river basin in Eastern Siberia: data analysis and hydrological modeling
  • 本地全文:下载
  • 作者:Andrey Kalugin ; Liudmila Lebedeva
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2020
  • 卷号:163
  • 页码:1-6
  • DOI:10.1051/e3sconf/202016301006
  • 出版社:EDP Sciences
  • 摘要:The study aims at the analysis of the long-term hydrometeorological data and hydrological modelling at the small permafrost Shestakovka river basin. The basin has postponed reaction to precipitation on different time scales from days to years. Annual, seasonal and monthly streamflow has higher correlation with precipitation sum for corresponding and antecedent time intervals than for the corresponding period only. It suggests importance of water storage and slow water release in the runoff generation that could be related to the suprapermafrost talik aquifers found in the river basin. A spatially distributed physically-based ECOMAG model was applied to the Shestakovka River basin. Evaluation of the simulated river runoff, soil moisture and snow water equivalent was carried out over a period 1990-2014. Obtained NSE 0.59 and BIAS 3% could be considered as satisfactory modelling results taking into account high inter annual and seasonal observed streamflow variability under much less variable meteorological conditions. Better understanding and modelling of the complex interactions between permafrost and hydrological processes is important for development of reliable flood forecasts and long-term future projections under changing climate and growing economical interests to cold regions.
  • 其他摘要:The study aims at the analysis of the long-term hydrometeorological data and hydrological modelling at the small permafrost Shestakovka river basin. The basin has postponed reaction to precipitation on different time scales from days to years. Annual, seasonal and monthly streamflow has higher correlation with precipitation sum for corresponding and antecedent time intervals than for the corresponding period only. It suggests importance of water storage and slow water release in the runoff generation that could be related to the suprapermafrost talik aquifers found in the river basin. A spatially distributed physically-based ECOMAG model was applied to the Shestakovka River basin. Evaluation of the simulated river runoff, soil moisture and snow water equivalent was carried out over a period 1990-2014. Obtained NSE 0.59 and BIAS 3% could be considered as satisfactory modelling results taking into account high inter annual and seasonal observed streamflow variability under much less variable meteorological conditions. Better understanding and modelling of the complex interactions between permafrost and hydrological processes is important for development of reliable flood forecasts and long-term future projections under changing climate and growing economical interests to cold regions.
国家哲学社会科学文献中心版权所有