首页    期刊浏览 2025年05月08日 星期四
登录注册

文章基本信息

  • 标题:Computing Haar Measures
  • 本地全文:下载
  • 作者:Arno Pauly ; Dongseong Seon ; Martin Ziegler
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2020
  • 卷号:152
  • 页码:1-17
  • DOI:10.4230/LIPIcs.CSL.2020.34
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:According to Haar’s Theorem, every compact topological group G admits a unique (regular, right and) left-invariant Borel probability measure μ_G. Let the Haar integral (of G) denote the functional â^«_G:?(G)â^< f ↦ â^« f d μ_G integrating any continuous function f:G â†' â" with respect to μ_G. This generalizes, and recovers for the additive group G=[0;1)mod 1, the usual Riemann integral: computable (cmp. Weihrauch 2000, Theorem 6.4.1), and of computational cost characterizing complexity class #P_1 (cmp. Ko 1991, Theorem 5.32). We establish that in fact, every computably compact computable metric group renders the Haar measure/integral computable: once using an elegant synthetic argument, exploiting uniqueness in a computably compact space of probability measures; and once presenting and analyzing an explicit, imperative algorithm based on "maximum packings" with rigorous error bounds and guaranteed convergence. Regarding computational complexity, for the groups SO(3) and SU(2), we reduce the Haar integral to and from Euclidean/Riemann integration. In particular both also characterize #P_1.
  • 关键词:Computable analysis; topological groups; exact real arithmetic; Haar measure
国家哲学社会科学文献中心版权所有