首页    期刊浏览 2025年05月02日 星期五
登录注册

文章基本信息

  • 标题:Positive solutions for a class of nonhomogeneous Kirchhoff–Schrödinger–Poisson systems
  • 本地全文:下载
  • 作者:Hongxia Shi
  • 期刊名称:Boundary Value Problems
  • 印刷版ISSN:1687-2762
  • 电子版ISSN:1687-2770
  • 出版年度:2019
  • 卷号:2019
  • 期号:1
  • 页码:1-16
  • DOI:10.1186/s13661-019-1252-7
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This paper deals with the following generalized nonhomogeneous Kirchhoff–Schrödinger–Poisson system: $$ \textstyle\begin{cases} (a+\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}+b\int _{\mathbb{R}^{3}} u ^{2} )(-\Delta u+bu)+q\phi f(u)=g(u)+h(x), & \text{in } \mathbb{R}^{3}, \\ -\Delta \phi =2q F(u), & \text{in }\mathbb{R}^{3}, \end{cases} $$ where $a>0$ , $b\geq 0$ are constants, $q\geq 0$ is a parameter, and $F(t)=\int _{0}^{t}f(s)\,\mathrm{d}s$ . Under some appropriate assumptions on $g(u)$ and $h(x)$ , the existence of two positive radial solutions is proved by applying Ekeland’s variational principle and the mountain pass theorem.
  • 关键词:Kirchhoff;Schrödinger;Poisson systems; Variational methods; Cut-off functional; Pohozaev type identity
国家哲学社会科学文献中心版权所有