摘要:This paper deals with the following generalized nonhomogeneous Kirchhoff–Schrödinger–Poisson system: $$ \textstyle\begin{cases} (a+\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}+b\int _{\mathbb{R}^{3}} u ^{2} )(-\Delta u+bu)+q\phi f(u)=g(u)+h(x), & \text{in } \mathbb{R}^{3}, \\ -\Delta \phi =2q F(u), & \text{in }\mathbb{R}^{3}, \end{cases} $$ where $a>0$ , $b\geq 0$ are constants, $q\geq 0$ is a parameter, and $F(t)=\int _{0}^{t}f(s)\,\mathrm{d}s$ . Under some appropriate assumptions on $g(u)$ and $h(x)$ , the existence of two positive radial solutions is proved by applying Ekeland’s variational principle and the mountain pass theorem.
关键词:Kirchhoff;Schrödinger;Poisson systems; Variational methods; Cut-off
functional; Pohozaev type identity