首页    期刊浏览 2025年05月10日 星期六
登录注册

文章基本信息

  • 标题:Porosity Prediction Using Neural Network Based on Seismic Inversion and Seismic Attributes
  • 本地全文:下载
  • 作者:Taufik Mawardi Sinaga ; M. Syamsu Rosid ; M. Wahdanadi Haidar
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:125
  • 页码:1-5
  • DOI:10.1051/e3sconf/201912515006
  • 出版社:EDP Sciences
  • 摘要:It has done a study of porosity prediction by using neural network. The study uses 2D seismic data post-stack time migration (PSTM) and 2 well data at field “T”. The objective is determining distribution of porosity. Porosity in carbonate reservoir is actually heterogeneous, complex and random. To face the complexity the neural network method has been implemented. The neural network algorithm uses probabilistic neural network based on best seismic attributes. It has been selected by using multi-attribute method with has high correlation. The best attributes which have been selected are amplitude envelope, average frequency, amplitude weighted phase, integrated absolute amplitude, acoustic impedance, and dominant frequency. The attribute is used as input to probabilistic neural network method process. The result porosity prediction based on probabilistic neural network use non-linear equation obtained high correlation coefficient 0.86 and approach actual log. The result has a better correlation than using multi-attribute method with correlation 0.58. The value of distribution porosity is 0.05–0.3 and it indicates the heterogeneous porosity distribution generally from the bottom to up are decreasing value.
  • 其他摘要:It has done a study of porosity prediction by using neural network. The study uses 2D seismic data post-stack time migration (PSTM) and 2 well data at field “T”. The objective is determining distribution of porosity. Porosity in carbonate reservoir is actually heterogeneous, complex and random. To face the complexity the neural network method has been implemented. The neural network algorithm uses probabilistic neural network based on best seismic attributes. It has been selected by using multi-attribute method with has high correlation. The best attributes which have been selected are amplitude envelope, average frequency, amplitude weighted phase, integrated absolute amplitude, acoustic impedance, and dominant frequency. The attribute is used as input to probabilistic neural network method process. The result porosity prediction based on probabilistic neural network use non-linear equation obtained high correlation coefficient 0.86 and approach actual log. The result has a better correlation than using multi-attribute method with correlation 0.58. The value of distribution porosity is 0.05–0.3 and it indicates the heterogeneous porosity distribution generally from the bottom to up are decreasing value.
  • 其他关键词:Porosity ; Probabilistic Neural Network ; Multi-attribute ; Seismic Attributes
国家哲学社会科学文献中心版权所有