首页    期刊浏览 2025年04月30日 星期三
登录注册

文章基本信息

  • 标题:Realizations of Indecomposable Persistence Modules of Arbitrarily Large Dimension
  • 作者:Micka{\"e}l Buchet ; Emerson G. Escolar
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:99
  • 页码:15:1-15:13
  • DOI:10.4230/LIPIcs.SoCG.2018.15
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:While persistent homology has taken strides towards becoming a widespread tool for data analysis, multidimensional persistence has proven more difficult to apply. One reason is the serious drawback of no longer having a concise and complete descriptor analogous to the persistence diagrams of the former. We propose a simple algebraic construction to illustrate the existence of infinite families of indecomposable persistence modules over regular grids of sufficient size. On top of providing a constructive proof of representation infinite type, we also provide realizations by topological spaces and Vietoris-Rips filtrations, showing that they can actually appear in real data and are not the product of degeneracies.
  • 关键词:persistent homology; multi-persistence; representation theory; quivers; commutative ladders; Vietoris-Rips filtration
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有