首页    期刊浏览 2025年05月08日 星期四
登录注册

文章基本信息

  • 标题:COURLIS: a 1D suspension and bedload code
  • 本地全文:下载
  • 作者:Matthieu Sécher ; Philippe Ung ; Eric Valette
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2018
  • 卷号:40
  • 页码:1-8
  • DOI:10.1051/e3sconf/20184005038
  • 出版社:EDP Sciences
  • 摘要:COURLIS is a 1D sedimentology module coupled with MASCARET, 1D hydraulic code of the TELEMAC-MASCARET open source system. The code has been developed for more than 10 years, mainly for suspension sediment transport. Recently, the need of a 1D bedload code has been identified to model the long term evolution of rivers and reservoirs (several decades). New numerical schemes were implemented, some improvements were done in the geometry evolution algorithms. In terms of performance and robustness, the best scheme implemented is a finite volume upwind/downwind scheme. Several solutions are implemented to reduce calculation time. This new version of COURLIS for bedload transport was validated successfully on test-cases (Soni and Newton experiments). A real case has been simulated during an 11 year period. The calculation time is very similar to those obtained with codes tested in the benchmark and the results are in a good agreement with measurements and other code results. COURLIS (suspension and bedload transport) will be released in the next version of the TELEMAC-MASCARET open source system and so, it will be freely available for sedimentology community. Further developments are planned in 2018.
  • 其他摘要:COURLIS is a 1D sedimentology module coupled with MASCARET, 1D hydraulic code of the TELEMAC-MASCARET open source system. The code has been developed for more than 10 years, mainly for suspension sediment transport. Recently, the need of a 1D bedload code has been identified to model the long term evolution of rivers and reservoirs (several decades). New numerical schemes were implemented, some improvements were done in the geometry evolution algorithms. In terms of performance and robustness, the best scheme implemented is a finite volume upwind/downwind scheme. Several solutions are implemented to reduce calculation time. This new version of COURLIS for bedload transport was validated successfully on test-cases (Soni and Newton experiments). A real case has been simulated during an 11 year period. The calculation time is very similar to those obtained with codes tested in the benchmark and the results are in a good agreement with measurements and other code results. COURLIS (suspension and bedload transport) will be released in the next version of the TELEMAC-MASCARET open source system and so, it will be freely available for sedimentology community. Further developments are planned in 2018.
国家哲学社会科学文献中心版权所有