首页    期刊浏览 2025年05月04日 星期日
登录注册

文章基本信息

  • 标题:An empirical comparison of block bootstrap methods: traditional and newer ones
  • 本地全文:下载
  • 作者:Beste H. Beyaztas ; Esin Firuzan
  • 期刊名称:Journal of Data Science
  • 印刷版ISSN:1680-743X
  • 电子版ISSN:1683-8602
  • 出版年度:2016
  • 卷号:14
  • 期号:4
  • 页码:641-656
  • 出版社:Tingmao Publish Company
  • 摘要:In this study, we compared various block bootstrap methods in terms of parameter estimation, biases and mean squared errors (MSE) of the bootstrap estimators. Comparison is based on four real-world examples and an extensive simulation study with various sample sizes, parameters and block lengths. Our results reveal that ordered and sufficient ordered non-overlapping block bootstrap methods proposed by Beyaztas et al. (2016) provide better results in terms of parameter estimation and its MSE compared to conventional methods. Also, sufficient non-overlapping block bootstrap method and its ordered version have the smallest MSE for the sample mean among the others.
  • 关键词:Block bootstrap; bootstrap; estimation; linear time series; sufficient bootstrap
国家哲学社会科学文献中心版权所有