首页    期刊浏览 2025年05月02日 星期五
登录注册

文章基本信息

  • 标题:Bounds for the Independence Number in k-Step Hamiltonian Graphs
  • 本地全文:下载
  • 作者:Noor A'lawiah Abd Aziz ; Nader Jafari Rad ; Hailiza Kamarulhaili
  • 期刊名称:Computer Science Journal of Moldova
  • 印刷版ISSN:1561-4042
  • 出版年度:2018
  • 卷号:26
  • 期号:1
  • 页码:15-28
  • 出版社:Institute of Mathematics and Computer Science
  • 摘要:For a given integer $k$, a graph $G$ of order $n$ is called $k$-step Hamiltonian if there is a labeling $v_1,v_2,...,v_n$ of vertices of $G$ such that $d(v_1,v_n)=d(v_i,v_{i+1})=k$ for $i=1,2,...,n-1$. The independence number of a graph is the maximum cardinality of a subset of pair-wise non-adjacent vertices. In this paper we study the independence number in $k$-step Hamiltonian graphs. We present sharp upper bounds as well as sharp lower bounds, and then present a construction that produces infinite families of $k$-step Hamiltonian graphs with arbitrarily large independence number.
  • 关键词:Independence number; Hamiltonian graph; $k$-Step Hamiltonian graph.
国家哲学社会科学文献中心版权所有