首页    期刊浏览 2025年05月04日 星期日
登录注册

文章基本信息

  • 标题:Complexity of Constraint Satisfaction Problems over Finite Substsets of Natural Numbers
  • 本地全文:下载
  • 作者:Titus Dose
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2016
  • 卷号:2016
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    We study the computational complexity of constraint satisfaction problems that are based on integer expressions and algebraic circuits. On input of a finite set of variables and a finite set of constraints the question is whether the variables can be mapped onto finite subsets of natural numbers (resp., finite intervals over natural numbers) such that all constraints are satisfied. According to the operations allowed in the constraints, the complexity varies over a wide range of complexity classes such as L , P , NP , PSPACE , NEXP , and even 1 , the class of c.e. languages.

  • 关键词:Computational Complexity ; Constraint satisfaction problems ; Integer expressions and integer circuits
国家哲学社会科学文献中心版权所有