首页    期刊浏览 2025年05月12日 星期一
登录注册

文章基本信息

  • 标题:Word-Based Grammars for PPM
  • 本地全文:下载
  • 作者:Nojood O. Aljehane ; William J. Teahan
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2017
  • 卷号:8
  • 期号:10
  • DOI:10.14569/IJACSA.2017.081037
  • 出版社:Science and Information Society (SAI)
  • 摘要:The Prediction by Partial Matching (PPM) compression algorithm is considered one of the most efficient methods for compressing natural language text. Despite the advances of the PPM method for the English language to predict upcoming symbols or words, more research is required to devise better compression methods for other languages, such as Arabic due, for example, to the rich morphological nature of the Arabic text, where a word can take many different forms. In this paper, we propose a new method that achieves the best compression rates not only for Arabic text but also for other languages that use Arabic script in their writing system such as Persian. Our word-based method constructs a context-free grammar (CFG) for the text and this grammar is then encoded using PPM to achieve excellent compression rates.
  • 关键词:Component; context-free grammar (CFG); grammar-base; word-based; Preprocessing; Prediction by Partial Matching (PPM); encoding
国家哲学社会科学文献中心版权所有