首页    期刊浏览 2025年04月29日 星期二
登录注册

文章基本信息

  • 标题:Interactions of cationic bile salt derivatives with the ileal bile salt transport system.
  • 本地全文:下载
  • 作者:A Firpi ; J T Walker ; L Lack
  • 期刊名称:JLR Papers In Press
  • 印刷版ISSN:0022-2275
  • 电子版ISSN:1539-7262
  • 出版年度:1975
  • 卷号:16
  • 期号:5
  • 页码:379-385
  • 语种:English
  • 出版社:American Society for Biochemistry and Molecular Biology
  • 摘要:Previous structure-activity studies of the active ileal bile salt transport system have demonstrated that a single negative charge on the side chain is essential for active transport. Furthermore, mutual inhibition studies between different pairs of bile salt substrates indicated that dihydroxy bile salts had a greater apparent affinity for the transport system than the trihydroxylated compounds and triketo bile salts had the least such affinity. In this study, a series of cationic bile salt derivatives (cholamine conjugates) were prepared with one, two, and three alpha-hydroxyl groups on the steroid moiety. Based on the previous observations one would expect (1) no active transport of any of the cholamine conjugates by the ileal transport system; (2) interaction of these compounds with the transport system in such a way as to inhibit the transport of bile salts, with inhibition potency of the transport of any single bile salt inversely related to the number of hydroxyl groups present on the cholamine conjugate; and (3) transport of triketo anionic bile salts to be most readily inhibited, trihydroxy compounds less readily inhibited, and dihydroxy bile salts least inhibited. Using everted gut sac preparations it was demonstrated that all three aforementioned expectations did occur. Furthermore, reversible inhibition of ileal absorption of taurocholate and the bile salt derivative taurodehydrocholate could be demonstrated in vivo. The dihydroxy cholamine conjugates were better inhibitors than the trihydroxy compound. Relative specificity for the bile salt system of these cationic bile salt derivatives was demonstrated in the in vivo preparation by comparing its inhibition of taurodehydrocholate absorption with their lesser capacity to inhibit glucose transport.
国家哲学社会科学文献中心版权所有