首页    期刊浏览 2025年05月09日 星期五
登录注册

文章基本信息

  • 标题:Nonlinear Model Predictive Control and System Identification for a Dual-hormone Artificial Pancreas
  • 本地全文:下载
  • 作者:Asbjørn Thode Reenberg ; Tobias K.S. Ritschel ; Emilie B. Lindkvist
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:7
  • 页码:915-921
  • DOI:10.1016/j.ifacol.2022.07.561
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this work, we present a switching nonlinear model predictive control (NMPC) algorithm for a dual-hormone artificial pancreas (AP), and we use maximum likelihood estimation (MLE) to identify the model parameters. A dual-hormone AP consists of a continuous glucose monitor (CGM), a control algorithm, an insulin pump, and a glucagon pump. The AP is designed with a heuristic to switch between insulin and glucagon as well as state-dependent constraints. We extend an existing glucoregulatory model with glucagon and exercise for simulation, and we use a simpler model for control. We test the AP (NMPC and MLE) using in silico numerical simulations on 50 virtual people with type 1 diabetes. The system is identified for each virtual person based on data generated with the simulation model. The simulations show a mean of 89.3% time in range (3.9–10 mmol/L) and no hypoglycemic events.
  • 关键词:KeywordsArtificial PancreasModel Predictive ControlSystem IdentificationOptimal ControlPhysiological modeling
国家哲学社会科学文献中心版权所有