首页    期刊浏览 2025年05月10日 星期六
登录注册

文章基本信息

  • 标题:Neuro-Fuzzy Digital Twin of a High Temperature Generator
  • 本地全文:下载
  • 作者:William Chicaiza Salazar ; Diogo Ortiz Machado ; Antonio Javier Gallego Len
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:9
  • 页码:466-471
  • DOI:10.1016/j.ifacol.2022.07.081
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractSolar absorption plants are renewable energy systems with a special advantage: the cooling demand follows the solar energy source. The problem is that this plant presents solar intermittency, phenomenological complexity, and nonlinearities. That results in a challenge for control and energy management. In this context, this paper develops a Digital Twin of an absorption chiller High Temperature Generator (HTG) seeking accuracy and low computational efort for control and management purposes. A neuro-fuzzy technique is applied to describe HTG, internal Lithium-Bromide temperature, and water outlet temperature. Two Adaptative Neuro-Fuzzy Inference Systems (ANFIS) are trained considering real data of eight days of operation. Then, the obtained model is validated considering two days of real data. The validation shows a RMSE of 1.65e−2for the internal normalized temperature, and 2.05e−2for the outlet normalized temperature. Therefore, the obtained Digital Twin presents a good performance capturing the dynamics of the HTG with adaptive capabilities considering that each day can update the learning step.
  • 关键词:KeywordsSolar EnergyFresnel Solar CollectorANFISHigh Pressure GeneratorAbsorption ChillerLithium-Bromide
国家哲学社会科学文献中心版权所有