首页    期刊浏览 2025年04月16日 星期三
登录注册

文章基本信息

  • 标题:Beta Residuals: Improving Fault-Tolerant Control for Sensory Faults via Bayesian Inference and Precision Learning
  • 本地全文:下载
  • 作者:Mohamed Baioumy ; William Hartemink ; Riccardo M.G. Ferrari
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:6
  • 页码:285-291
  • DOI:10.1016/j.ifacol.2022.07.143
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractModel-based fault-tolerant control (FTC) often consists of two distinct steps: fault detection & isolation (FDI), and fault accommodation. In this work we investigate posing fault-tolerant control as a single Bayesian inference problem. Previous work showed that precision learning allows for stochastic FTC without an explicit fault detection step. While this leads to implicit fault recovery, information on sensor faults is not provided, which may be essential for triggering other impact-mitigation actions. In this paper, we introduce a precision-learning based Bayesian FTC approach and a novelbeta residualfor fault detection. Simulation results are presented, supporting the use of beta residual against competing approaches.
国家哲学社会科学文献中心版权所有