首页    期刊浏览 2025年05月01日 星期四
登录注册

文章基本信息

  • 标题:Flow estimation solely from image data through persistent homology analysis
  • 本地全文:下载
  • 作者:Anna Suzuki ; Miyuki Miyazawa ; James M. Minto
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-97222-6
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Topological data analysis is an emerging concept of data analysis for characterizing shapes. A state-of-the-art tool in topological data analysis is persistent homology, which is expected to summarize quantified topological and geometric features. Although persistent homology is useful for revealing the topological and geometric information, it is difficult to interpret the parameters of persistent homology themselves and difficult to directly relate the parameters to physical properties. In this study, we focus on connectivity and apertures of flow channels detected from persistent homology analysis. We propose a method to estimate permeability in fracture networks from parameters of persistent homology. Synthetic 3D fracture network patterns and their direct flow simulations are used for the validation. The results suggest that the persistent homology can estimate fluid flow in fracture network based on the image data. This method can easily derive the flow phenomena based on the information of the structure.
国家哲学社会科学文献中心版权所有