摘要:Due to the rise of social and environmental concerns on global climate change, developing the low-carbon economy is a necessary strategic step to respond to greenhouse effect and incorporate sustainability. As such, there is a new trend for the cold chain industry to establish the low-carbon vehicle routing optimization model which takes costs and carbon emissions as the measurements of performance. This paper studies a low-carbon vehicle routing problem (LC-VRP) derived from a real cold chain logistics network with several practical constraints, which also takes customer satisfaction into account. A low-carbon two-echelon heterogeneous-fleet vehicle routing problem (LC-2EHVRP) model for cold chain third-party logistics servers (3PL) with mixed time window under a carbon trading policy is constructed in this paper and aims at minimizing costs, carbon emissions and maximizing total customer satisfaction simultaneously. To find the optimal solution of such a nondeterministic polynomial (NP) hard problem, we proposed an adaptive genetic algorithm (AGA) approach validated by a numerical benchmark test. Furthermore, a real cold chain case study is presented to demonstrate the influence of the mixed time window#8217;s changing which affect customers#8217; final satisfaction and the carbon trading settings on LC-2EHVRP model. Experiment of LC-2EHVRP model without customer satisfaction consideration is also designed as a control group. Results show that customer satisfaction is a critical influencer for companies to plan multi-echelon vehicle routing strategy, and current modest carbon price and trading quota settings in China have only a minimal effect on emissions#8217; control. Several managerial suggestions are given to cold chain logistics enterprises, governments, and even consumers to help improve the development of cold chain logistics.