首页    期刊浏览 2025年04月30日 星期三
登录注册

文章基本信息

  • 标题:Beta-Binomial stick-breaking non-parametric prior
  • 本地全文:下载
  • 作者:María F. Gil–Leyva ; Ramsés H. Mena ; Theodoros Nicoleris
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2020
  • 卷号:14
  • 期号:1
  • 页码:1479-1507
  • DOI:10.1214/20-EJS1694
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:A new class of nonparametric prior distributions, termed Beta-Binomial stick-breaking process, is proposed. By allowing the underlying length random variables to be dependent through a Beta marginals Markov chain, an appealing discrete random probability measure arises. The chain’s dependence parameter controls the ordering of the stick-breaking weights, and thus tunes the model’s label-switching ability. Also, by tuning this parameter, the resulting class contains the Dirichlet process and the Geometric process priors as particular cases, which is of interest for MCMC implementations.
  • 关键词:Beta-Binomial Markov chain; density estimation; Dirichlet process prior; geometric process prior; stick-breaking prior
国家哲学社会科学文献中心版权所有