首页    期刊浏览 2025年05月01日 星期四
登录注册

文章基本信息

  • 标题:Unsupervised Semiconductor chamber matching based on shape comparison
  • 本地全文:下载
  • 作者:Julien Marino ; Francesco Rossi ; Mustapha Ouladsine
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:3905-3910
  • DOI:10.1016/j.ifacol.2017.08.363
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe present a new chamber matching algorithm, which is completely data-driven and unsupervised, and designed for the semiconductor industry. The behavior of an equipment is classified as different when the shape of the time series given by one of the sensors is significantly different. Shape comparison is performed using linear regression, that authorizes both offset and change of scale.The method detects both the chamber and the sensor in which the fault is present, then helping in activating corrective maintenances. Application results are shown with two examples of real semiconductor industrial failures.
  • 关键词:Keywordsstatistical monitoringsemiconductor processchamber matchingunsupervised classificationshape comparison
国家哲学社会科学文献中心版权所有